Stabilization of RBF-generated finite difference methods for convective PDEs
نویسندگان
چکیده
Radial basis functions (RBFs) are receiving much attention as a tool for solving PDEs because of their ability to achieve spectral accuracy also with unstructured node layouts. Such node sets provide both geometric flexibility and opportunities for local node refinement. In spite of requiring a somewhat larger total number of nodes for the same accuracy, RBF-generated finite difference (RBF-FD) methods can offer significant savings in computer resources (time and memory). This study presents a new filter mechanism, allowing such gains to be realized also for purely convective PDEs that do not naturally feature any stabilizing dissipation. 2010 Elsevier Inc. All rights reserved.
منابع مشابه
A Radial Basis Function (RBF)-Finite Difference (FD) Method for Diffusion and Reaction-Diffusion Equations on Surfaces
In this paper, we present a method based on Radial Basis Function (RBF)-generated Finite Differences (FD) for numerically solving diffusion and reaction-diffusion equations (PDEs) on closed surfaces embedded in ℝ d . Our method uses a method-of-lines formulation, in which surface derivatives that appear in the PDEs are approximated locally using RBF interpolation. The method requires only scatt...
متن کاملRadial Basis Function-generated Finite Differences: A Mesh-free Method for Computational Geosciences
Radial basis function generated finite differences (RBF-FD) is a mesh-free method for numerically solving partial differential equations (PDEs) that emerged in the last decade and has shown rapid growth in the last few years. From a practical standpoint, RBF-FD sprouted out of global RBF methods, which have shown exceptional numerical qualities in terms of accuracy and time stability for numeri...
متن کاملA Radial Basis Function Partition of Unity Collocation Method for Convection-Diffusion Equations Arising in Financial Applications
Meshfree methods based on radial basis function (RBF) approximation are of interest for numerical solution of partial differential equations (PDEs) because they are flexible with respect to geometry, they can provide high order convergence, they allow for local refinement, and they are easy to implement in higher dimensions. For global RBF methods, one of the major disadvantages is the computat...
متن کاملSolution to PDEs using radial basis function finite-differences (RBF-FD) on multiple GPUs
This paper presents parallelization strategies for the Radial Basis Function-Finite Difference (RBFFD) method. As a generalized finite differencing scheme, the RBF-FD method functions without the need for underlying meshes to structure nodes. It offers high-order accuracy approximation but scales as O(N) per time step, with N being with the total number of nodes. To our knowledge, this is the f...
متن کاملPricing Derivatives under Multiple Stochastic Factors by Localized Radial Basis Function Methods
We propose two localized Radial Basis Function (RBF) methods, the Radial Basis Function Partition of Unity method (RBF-PUM) and the Radial Basis Function generated Finite Differences method (RBF-FD), for solving financial derivative pricing problems arising from market models with multiple stochastic factors. We demonstrate the useful features of the proposed methods, such as high accuracy, spa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 230 شماره
صفحات -
تاریخ انتشار 2011